Given:
$\mathrm{BM}=\mathrm{MA}$
$\mathrm{AE} \perp C B$
BL=LC
$\mathrm{DF}=\frac{1}{2} A E$
To Prove:
$\angle M F L=\angle B$
Construction:
Join MD, MF, FL \& BE
Proof:
As $\mathrm{DF}=\frac{1}{2} A E$
$\Rightarrow \mathrm{AF}+\mathrm{DE}=\mathrm{AE}-\mathrm{FD}=\frac{1}{2} A E$
$\therefore \mathrm{AF}+\mathrm{ED}=\mathrm{FD}$
Let K on FD such that
$\mathrm{AF}=\mathrm{FK} \& \mathrm{KD}=\mathrm{DE}$
Join BK and ML
$\triangle \mathrm{ABD}$ right triangle
DM is the median
$\mathrm{DM}=\mathrm{BM}=\mathrm{AM}$
$\Rightarrow \angle M D B=\angle B$
M is midpoint of $A B$
F is midpoint of $A K$
\therefore By midpoint theorem
MF||BK
$\angle A C B=\angle A E B$ (same chord)
$=\angle C$
In $\triangle \mathrm{BDK}, \triangle B D E$
$\mathrm{BD}=\mathrm{BD}$
$\angle B D K=\angle B D E$
DK=DE
$\therefore \triangle B D K \cong \triangle B D E$
$\angle B K E=\angle B E D=\angle C$
BK || MF
$\angle B K E=\angle M F E=\angle C$
$\angle B A D=90^{\circ}-\angle B$
$\therefore \angle A M F=\angle C-\left(90^{\circ}-\angle B\right)$

$$
\begin{aligned}
& =\angle C+\angle B-90^{\circ} \\
& =\angle A+\angle B+\angle C-90^{\circ}-\angle A \\
& =180^{\circ}-90^{\circ}=\angle A \\
& =90^{\circ}-\angle A
\end{aligned}
$$

M is midpoint of $A B, L$ is midpoint of $B C$
\therefore By MPT, ML $\| A C$
$\angle L M B=\angle C A B=\angle A$
$\angle F M L=180^{\circ}-\angle A-(90-A)$
$=90^{\circ}$
$=\angle F D L$
FMDL is cyclic quadrilateral
$\therefore \angle M D B=\angle M F L$
(Exterior $\angle=$ interior angle)
$\angle M D B=\angle M B D=\angle B$
$\therefore \angle B=\angle M F L$

